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Tailoring the profile and interactions of optical localized structures
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We experimentally demonstrate the broad tunability of the main features of optical localized structures
~LS’s! in a nonlinear interferometer. By discussing how a single LS depends on the system spatial frequency
bandwidth, we show that a modification of its tail leads to the possibility of tuning the interactions between LS
pairs, and thus the equilibrium distances at which LS bound states form. This is in agreement with a general
theoretical model describing weak interactions of LS in nonlinear dissipative systems.
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Localization of spatial patterns is a subject of major c
rent interest in the research on nonlinear dissipative dyna
cal systems. The studies about this topic have naturally
lowed and sidelined those dedicated to the formation
temporal and spatial solitons in Hamiltonian systems@1#.
Analytical and numerical works have identified several d
tinct mechanisms leading to structure localization in dissi
tive systems@2#, and experimental observations of this ph
nomenon have been recently offered in several systems,
as fluid dynamics@3#, chemistry@4#, granular materials@5#
and nonlinear optics@6#.

In particular, optical localized structures~LS’s!, to which
we will also refer to asdissipative solitonsin the following,
are objects of intense research, also in view of possible
plications as pixels in devices for information storage or p
cessing. So far, the existence of optical dissipative solit
has been theoretically predicted in many passive@7# and ac-
tive @8# configurations, and optical LS’s have been observ
in photorefractive cavities@9# and in passive nonlinear inter
ferometers, based either on the ‘‘thin slice with feedbac
scheme@10–12#, or on a microresonator filled with a sem
conductor medium@13#. More recently, the interactions be
tween LS’s have been shown to give rise to the formation
a discrete set of bound states@11#.

To our knowledge, very little is known about the depe
dence of the LS’s features on the experimental parame
The present work addresses this issue, by investigating
the spatial frequency bandwidth of a nonlinear interferome
can be utilized to tune both the spatial profile of each sin
soliton, and the interaction forces between two of them
quantitative experimental evidence is given of the cruc
role played by the oscillatory tails of a single LS in dete
mining the interaction forces between solitons.

Our experimental system consists of a liquid crystal lig
valve ~LCLV ! closed in an optical feedback containing bo
interferential and diffractive processes. When an initia
plane wave is sent into the system, its phasew(rW,t) evolves
according to@12#
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wherew05p is the phase working point of the LCLV, andt
andl d are its response time and diffusion length respective
The source term in the right-hand side of Eq.~1! depends on
the free propagation length,l in the feedback loop, as well a
on the laser light wave numberk0 and on the parametersB
andC, that tune the relative weight of diffraction and inte
ference in the system. Finally,I 0 is the incident laser inten
sity, and a describes the Kerr-like response of the LCL
Here, B5cos2u, C5sin2u, where u is the ~experimentally
adjustable! angle between the director of the nematic liqu
crystals of the LCLV and the transmissive axis of a polariz
oriented along the polarization direction of the incident lig

In a previous work@12#, we have characterized the sta
diagram of the interferometer in the parameter plane (u,I 0),
finding that localization of patterns occurs for a broad ran
of u values (.35° to 58°). This phenomenon is related
the presence of a subcritical bifurcation, connecting a low
uniform branch to an upper patterned one. In these co
tions, the formation of isolated spots connecting the t
branches is typical@7,14,15#. Besidesu and I 0, the scenario
of observable patterns crucially depends on the spatial
quency bandwidthqB of the interferometer, which can b
experimentally controlled by means of a variable apert
put in a Fourier plane. In what follows we discuss the ma
LS’s features that emerge by keeping fixedu542°, and
varying I 0 and the adimensional parameterqb[qB /qdiff ob-
tained by normalizing the system bandwidth to the diffra
tive interferometer wave numberqdiff5Apk0 / l .

A first point of interest is to establish the range of ex
tence of LS’s in the (qb ,I 0) plane. In Fig. 1, we plot the stat
diagram of the system in this parameter plane, together w
some snapshots representative of the observed patterns
the experiments are performed at incident laser wavelen
l5632 nm and forl 5250 mm. This results in a scale o
the observed patterns of the order of 2p/qdiff.0.5 mm.

Looking at Fig. 1, one easily realizes that the range
existence of LS’s is very broad, not at all limited to som
particular parameter choices. The lower threshold for the
istence of LS’s increases for decreasingqb . This is a conse-
quence of the fact that LS’s have an internal structure c
©2002 The American Physical Society04-1
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taining both low- and high-frequency components, as w
appear evident in the following. Therefore, any bandwid
limitation perturbs the LS’s, and increases the threshold
their existence. At very lowqb and high intensities, localiza
tion of structures is lost and regular hexagons are obser
due to the long-range correlation imposed to the pattern
the small bandwidth.

If I 0 is kept fixed at high values whileqb is increased,
hexagonal patterns evolve into a space-time chaotic~STC!
regime. The boundary line between STC and LS’s occur
decreasing intensities whenqb is increased. This indicate
that the regime here generically referred to as STC can a
either from a strong excitation of a relatively small band
wave numbers, or from a weak excitation of a large set
interacting spatial modes. The indetermination of the bou
aries between the different regimes is of the order of 10%
must be also specified that the placement of the bounda
depends on the evolutionary history of the parameters, s
we are in presence of a subcritical bifurcation. The so
lines in Fig. 1 were obtained by decreasing the input int
sity, the dashed line by increasing it. Localized structures
not observed in this last case.

Scanning the parameters within the domain of LS’s ex
tence leads to sensible modifications in the shape of e
structure. In Fig. 2 we show the variation in the LS’s inte
sity profile observed by keepingI 0 close to the lower thresh
old for LS’s existence and increasingqb . It is seen here tha
each structure is formed by a central peak, and by a se
concentric rings forming a tail that shows spatial oscillatio
of decreasing amplitudes for increasing distances from
LS’s center. The width of the central peak can be roug
evaluated as the diameter of the first dark ring in each fra
and appears to be practically independent ofqb .

FIG. 1. Solid line, state diagram of the system in the (qb ,I 0)
parameter plane, obtained by starting the experiment at a high p
value and then gradually decreasing it. Notice that LS emerge f
broad range of parameters~gray area in the plane!. Dashed line,
threshold value for pattern formation when starting the experim
at a low pump value, and then increasing it. No LS’s are obser
in this case. The three reported patterns are snapshots of th
served hexagons, LS’s, and space-time chaotic states.
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The length scale of the oscillations on the tails is inste
strongly dependent onqb . Namely, this scale decreases fo
increasingqb until qb.3, and then saturates to a consta
value.

The set of our observations indicates that LS’s have
‘‘natural’’ unperturbed shape like that displayed forqb>3.
By constraining the system to a bandwidth smaller than t
value, one is then able to tune the LS’s profile, imposi
oscillations on the tails at a frequency different from th
natural one. The occurrence of oscillatory tails on LS’s ha
been reported in other physical systems@15,17#, and it is
considered to be a typical signature of the formation of LS
via pinning of the fronts connecting the uniform and th
patterned states@2#.

The observed LS’s closely resemble those reported in R
@15#, in which a subcritical real Swift-Hohenberg~SH! equa-
tion is studied analytically and numerically. This is not su
prising, since our experiment displays a subcritical bifurc
tion of a real order parameter to a patterned state,
therefore is appropriately modeled by an order parame
equation of that kind. We do not expect that the SH mod
describes faithfully all the details observed in the expe
ment, However, it is known@16#, for example, that the ‘‘thin
slice with feedback’’ model, of which our experiment is a
implementation, presents instabilities at multiple wave nu
bers given byqN5ANqdiff , N51,5,9, . . . . Though the
highest wave numbers become active at high values of pu
parameter due to diffusion, it may be expected that they p
some role in determining the fine features of the LS’s. O
aim in comparing the experimental findings with the pred
tion of the SH model is indeed to investigate whether so
fundamental features of the observed phenomenon can
described in terms of this very general model.

Using the Swift-Hohenberg model, it is found analytical
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FIG. 2. Variation of the LS’s shape with the system bandwid
Snapshots of the observed solitons for~a! qb51.0, I 0

5700 mW/cm2, ~b! qb51.2, I 05620 mW/cm2, ~c! qb51.6, I 0

5520 mW/cm2, ~d! qb52.2, I 05480 mW/cm2, ~e! qb52.8, I 0

5460 mW/cm2, ~f! qb54.0, I 05460 mW/cm2. The pictures are
overexposed at the location of the central peak, in order to al
visualization of low intensity features on the LS’s tails.
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that the LS’s tails are described by single spatial scale os
lations, embedded in an exponential envelope that dep
from the lower uniform state.

Though the LS’s tails in our case display some deviatio
from the above ideal behavior, the qualitative agreement
tween our observations and the results of the general th
reported in Ref.@15# is satisfactory. In particular, it is pos
sible to identify for each value ofqb a dominating spatia
scale in the oscillatory tails. To this purpose, we measure
distance between successive maxima of a single LS and
erage this quantity over all observed maxima. This way,
obtain the dominant spatial frequency of the tail oscillatio
which is then normalized toqdiff and reported asqtails in Fig.
3. The error bars correspond to the measured frequency
tuations from theqtails, reflecting the fact that the tail oscil
lations are not rigorously at a single spatial scale. Looking
Fig. 3, one easily realizes thatqtails practically coincides with
qb for qb<3. At higher values ofqb , no variations inqtails as
well as in overall LS’s profile are observed.

The shape of the tails is responsible for the interacti
between localized structures. Namely, while for monoto
cally decreasing tails, one would expect only attractive
repulsive forces between LS’s, oscillatory tails induce os
latory signs of the interactions, thus producing both attrac
and repulsive forces, depending on the distance between
centers of a pair of LS’s@15,17#. A recent work@11# has
experimentally demonstrated the existence of a discrete
of LS bound states, occurring in the presence of oscillati
on the LS’s tails. The selection rule for the discrete set
bound states observed has been there put in relation with
spacing of their rings originated by diffraction around t
central peak. In the following we show how these bou
states can be in fact tuned by varying the spatial freque
bandwidth of the interferometer, and we discuss how
selection of the observed bound states can be put in the
general framework of a subcritical SH model.

In Fig. 4 we display a set of different bound states o
served forqb53.6. We notice that the states form a set th
can be ordered following a precise rule, given by simp
counting the number of maxima and minima that occur alo
the segment connecting the two LS’s centers. We will c
this numbern asbound state ordernumber. Such a feature i
encountered for all values ofqb . At small system band-
widths, however, we observe only the first two or thr

FIG. 3. Variation in the main frequency of the LS’s tail oscill
tions as a function of the system bandwidth. Bothqtails andqb are
adimensional quantities~see text for definition!.
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FIG. 4. Snapshots of different bound states observed atqb

53.6, I 05500 mW/cm2. All patterns~a!–~e! are obtained by in-
ducing a pair of LS’s with an increasing initial distance betwe
centers, and letting the system evolve up to the time at which
stationary bound state is realized.
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bound states, instead of the entire set shown in Fig. 4. Th
probably due to the fact that the binding energy of each s
varies withqb , and in some cases it is not sufficient to ke
the LS pair tightly bound in the presence of unavoida
system inhomogeneities and fluctuations.

A theory for the interaction of LS pairs was given in Re
@15# in the context of study on a real Swift-Hohenberg equ
tion. As already discussed, we expect this model to
closely applicable to our system in the present conditio
Following that approach, the weak interactions betwee
pair of LS’s with tails decaying with a lengthm and oscillat-
ing at a frequencyn, lead to a time evolution for the distanc
R between the LS’s centers ruled by

dR

dt
5

1

R

d

dR
@e2mRcos~nR!#[F~R,m,n!. ~2!

As a consequence, an infinite number of stable bo
states are possible, corresponding to the solutionsF50,
dF/dR,0 of Eq. ~2!. In the limit in which the scalesm and
n are well separated, the differenceRn112Rn between the
separation distances of two successive bound states c
sponds approximately to the tail oscillation lengthn21 of a
single LS. We recall that byweak interactionwe mean a
regime in which the intensity amplitude of one LS is small
the space region in which the intensity amplitude of the ot
is large. In the case of our experimental data, this is true
all the bound states observed, with the possible exceptio
the lowest order one.

If we assume that Eq.~2! describes correctly the boun
state selection rule in our experiment, it immediately follo
that tuning of the equilibrium distances should be possible
varying the scale of the oscillations on the tails of each sin
LS. In order to check this point, we measured the quanti
Dn,n115Rn112Rn , and then averaged them over the bou
d
tz
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tt.
s,
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state order numbern. The resulting quantityd̄ ~normalized to
the lengthL tails) is reported vsqb in Fig. 5. A constant value

of the ratiod̄/L tails.1 is observed within the errors, indica
ing that the above discussed relation between the oscillat
on the tails of each LS and the selection rule of bound sta
is verified. This marks the fact that tuning of the equilibriu
distances between LS’s in bound states can be quantitati
performed in our experiment.

In conclusion, we have given a quantitative evidence
the tuning of the LS’s spatial profile in a nonlinear optic
interferometer, using the system spatial frequency bandw
as a control parameter. We have discussed the role of
oscillations occurring on each single LS’s tail in determini
the interactions between different LS’s. Finally, we ha
verified the agreement between the selection rules for
formation of bound states observed in our experiment,
those predicted for the same phenomenon by a general m
for pattern formation in nonequilibrium systems.

FIG. 5. d̄/L tails vs qb ~see text for definitions!. Both quantities
are adimensional. Notice that, for all measurement a constant v

of d̄/L tails;1 is realized within the experimental errors.
t.

ys.

pt.

iss,

-

v-

ev.

ys.
@1# See, e.g., E. Infeld and G. Rowlands,Nonlinear Waves, Soli-
tons and Chaos, 2nd ed.~Cambridge University Press!, Cam-
bridge, England 2000!.

@2# H. Riecke, inPattern Formation in Continuous and Couple
Systems, edited by M. Golubitsky, D. Luss, and S. Stroga
IMA Vol. 115 ~Springer, New York, 1999!, p. 215.

@3# E. Moses, J. Fineberg, and V. Steinberg, Phys. Rev. A35, 2757
~1987!.

@4# H.H. Rotermund, S. Jakubith, A. Von Oertzen, and G. E
Phys. Rev. Lett.66, 3083~1991!.

@5# P. Umbanhowar, F. Melo, and H. Swinney, Nature~London!
382, 793 ~1996!.

@6# F.T. Arecchi, S. Boccaletti, and P.L. Ramazza, Phys. Rep.318,
1 ~1999!.

@7# M. Tlidi, P. Mandel, and R. Lefever, Phys. Rev. Lett.73, 640
~1994!.

@8# N.N. Rosanov, A.V. Fedorov, S.V. Fedorov, and G.V. Khodo
Physica D96, 272 ~1996!.

@9# M. Saffman, D. Montgomery, and D.Z. Anderson, Opt. Le
19, 518~1994!; V.B. Taranenko, K. Staliunas, and C.O. Weis
,

,

Phys. Rev. Lett.81, 2236~1998!.
@10# A. Schreiber, B. Thuring, M. Kreuzer, and T. Tschudi, Op

Commun.136, 415 ~1997!.
@11# B. Schapers, M. Feldmann, T. Ackemann, and W. Lange, Ph

Rev. Lett.85, 748 ~2000!.
@12# P.L. Ramazza, S. Ducci, S. Boccaletti, and F.T. Arecchi, J. O

B: Quantum Semiclassical Opt.2, 399 ~2000!.
@13# V.B. Taranenko, I. Ganne, R.J. Kuszelewicz, and C.O. We

Phys. Rev. A61, 063818~2000!; J. Tredicce,Communication
at the Sixth Experimental Chaos Conference, ~Potsdam, Ger-
many, 2001!.

@14# W.J. Firth and A.J. Scroggie, Phys. Rev. Lett.76, 1623~1996!;
L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lu
giato, Phys. Rev. A58, 2542~1998!.

@15# I.S. Aranson, K.A. Gorshkov, A.S. Lomov, and M.I. Rabino
ich, Physica D43, 435 ~1990!.

@16# C. Schenk, P. Schultz, M. Bode, and H.G. Purwins, Phys. R
E 57, 6480~1998!.

@17# R. Neubecker, G.L. Oppo, B. Thuering, and T. Tschudi, Ph
Rev. A52, 791 ~1995!.
4-4


