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Tailoring the profile and interactions of optical localized structures
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We experimentally demonstrate the broad tunability of the main features of optical localized structures
(LS’s) in a nonlinear interferometer. By discussing how a single LS depends on the system spatial frequency
bandwidth, we show that a modification of its tail leads to the possibility of tuning the interactions between LS
pairs, and thus the equilibrium distances at which LS bound states form. This is in agreement with a general
theoretical model describing weak interactions of LS in nonlinear dissipative systems.
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Localization of spatial patterns is a subject of major cur-where¢,= 7 is the phase working point of the LCLV, and
rent interest in the research on nonlinear dissipative dynamiandl 4 are its response time and diffusion length respectively.
cal systems. The studies about this topic have naturally folThe source term in the right-hand side of Et). depends on
lowed and sidelined those dedicated to the formation ofhe free propagation lengthin the feedback loop, as well as

Anaitical and numerioal works have Kdentitd several dis O 118 135e1 light wave numbis; and on the parametets
tinct mechanisms leading to structure localization in dissipafr’md <, that tune the relat_lve we_|ght Of. dlf_'fractlon an(_j Inter-
tive systemd2], and experimental observations of this IOhe_fgrence in the sygtem. Finallig |§ the incident laser inten-
nomenon have been recently offered in several systems, suHY, and « describes the Kerr-like response of the LCLV.
as fluid dynamicg3], chemistry[4], granular material§s] ~ Here, B=cos'6, C=sin’4, where ¢ is the (experimentally
and nonlinear optic6]. adjustable angle between the director of the nematic liquid
In particular, optical localized structurékS’s), to which  crystals of the LCLV and the transmissive axis of a polarizer
we will also refer to aglissipative soliton$n the following,  oriented along the polarization direction of the incident light.
are objects of intense research, also in view of possible ap- |n a previous wor12], we have characterized the state
plications as pixels in devices for information storage or pro-giagram of the interferometer in the parameter plafig),

cessing. So far, t_he exister_lce Of. optical dissipative SOIitor‘ﬁnding that localization of patterns occurs for a broad range
has been theoretically predicted in many pasgRjeand ac- f 6 values &35° to 58°). This phenomenon is related to

tive [8] configurations, and optical LS’s have been observe h f beritical bif i i |
in photorefractive cavitief9] and in passive nonlinear inter- '€ Préseénce of a subcritical biturcation, connecting a lower
ferometers, based either on the “thin slice with feedback”Uniform branch to an upper patterned one. In these condi-

schemd10—17, or on a microresonator filled with a semi- tions, the formation of isolated spots connecting the two
conductor mediunj13]. More recently, the interactions be- branches is typicdl7,14,15. Besidesd andl, the scenario
tween LS’s have been shown to give rise to the formation oPf observable patterns crucially depends on the spatial fre-
a discrete set of bound statiel]. quency bandwidthgg of the interferometer, which can be
To our knowledge, very little is known about the depen-experimentally controlled by means of a variable aperture
dence of the LS’s features on the experimental parameterput in a Fourier plane. In what follows we discuss the main
The present work addresses this issue, by investigating howS’s features that emerge by keeping fixée-42°, and
the spatial frequency bandwidth of a nonlinear interferometevarying I, and the adimensional parametg=qg/qix Ob-
can be utilized to tune both the spatial profile of each singldained by normalizing the system bandwidth to the diffrac-
soliton, and the interaction forces between two of them. Alive interferometer wave numbegz = v 7kq/l.
guantitative experimental evidence is given of the crucial A first point of interest is to establish the range of exis-
role played by the oscillatory tails of a single LS in deter-tence of LS’s in thed,,l) plane. In Fig. 1, we plot the state
mining the interaction forces between solitons. diagram of the system in this parameter plane, together with
Our experimental system consists of a liquid crystal lightsome snapshots representative of the observed patterns. All
valve (LCLV) closed in an optical feedback containing boththe experiments are performed at incident laser wavelength
interferential and diffractive processes. When an initiallyA =632 nm and fol =250 mm. This results in a scale of
plane wave is sent into the system, its phage,t) evolves the observed patterns of the order af/2|4=~0.5 mm.
according to/12] Looking at Fig. 1, one easily realizes that the range of
existence of LS’s is very broad, not at all limited to some
particular parameter choices. The lower threshold for the ex-
istence of LS’s increases for decreasmg This is a conse-
(1) quence of the fact that LS’s have an internal structure con-
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FIG. 1. Solid line, state diagram of the system in tg (o) FIG. 2. Variation of the LS’s shap(_e with the system bandwidth.
parameter plane, obtained by starting the experiment at a high pum?)napShOtS of the observed solitons fde) Gy=1.0, lo
value and then gradually decreasing it. Notice that LS emerge for a 100 pWien?, (b) dy=1.2,19=620 uW/cn?, (c) g,=1.6, I

broad range of parametetgray area in the planeDashed line, >0 pW/en?, (d) gy=2.2, 1=480 uWicn?, (6) q,=2.8, 1

threshold value for pattern formation when starting the experiment 269 pWien?, (f) d,=4.0,1,=460 uWicn?. The pictures are

at a low pump value, and then increasing it. No LS's are observe@Verexposed at the location of the central peak, in order to allow
in this case. The three reported patterns are snapshots of the Oﬂ_suallzatlon of low intensity features on the LS’s tails.
served hexagons, LS’s, and space-time chaotic states.

The length scale of the oscillations on the tails is instead
taining both low- and high-frequency components, as willstrongly dependent oq,,. Namely, this scale decreases for
appear evident in the following. Therefore, any bandwidthincreasingq, until g,=3, and then saturates to a constant
limitation perturbs the LS’s, and increases the threshold fowalue.
their existence. At very lowg, and high intensities, localiza- The set of our observations indicates that LS’s have a
tion of structures is lost and regular hexagons are observetihatural” unperturbed shape like that displayed fgg=3.
due to the long-range correlation imposed to the pattern by constraining the system to a bandwidth smaller than this
the small bandwidth. value, one is then able to tune the LS’s profile, imposing

If 15 is kept fixed at high values whilg, is increased, oscillations on the tails at a frequency different from the
hexagonal patterns evolve into a space-time cha@&itC) natural one. The occurrence of oscillatory tails on LS’s have
regime. The boundary line between STC and LS’s occurs dbeen reported in other physical systefd$,17, and it is
decreasing intensities whegy, is increased. This indicates considered to be a typical signature of the formation of LS’s
that the regime here generically referred to as STC can arisda pinning of the fronts connecting the uniform and the
either from a strong excitation of a relatively small band of patterned state?].
wave numbers, or from a weak excitation of a large set of The observed LS's closely resemble those reported in Ref.
interacting spatial modes. The indetermination of the boundf15], in which a subcritical real Swift-Hohenbe(§H) equa-
aries between the different regimes is of the order of 10%. Ition is studied analytically and numerically. This is not sur-
must be also specified that the placement of the boundariggising, since our experiment displays a subcritical bifurca-
depends on the evolutionary history of the parameters, sindgon of a real order parameter to a patterned state, and
we are in presence of a subcritical bifurcation. The solidtherefore is appropriately modeled by an order parameter
lines in Fig. 1 were obtained by decreasing the input intenequation of that kind. We do not expect that the SH model
sity, the dashed line by increasing it. Localized structures ardescribes faithfully all the details observed in the experi-
not observed in this last case. ment, However, it is knowh16], for example, that the “thin

Scanning the parameters within the domain of LS’s exisslice with feedback” model, of which our experiment is an
tence leads to sensible modifications in the shape of eadmplementation, presents instabilities at multiple wave num-
structure. In Fig. 2 we show the variation in the LS’s inten-bers given bygy=+Nqgs, N=1,59... . Though the
sity profile observed by keeping close to the lower thresh- highest wave numbers become active at high values of pump
old for LS’s existence and increasing. It is seen here that parameter due to diffusion, it may be expected that they play
each structure is formed by a central peak, and by a set cfome role in determining the fine features of the LS’s. Our
concentric rings forming a tail that shows spatial oscillationsaim in comparing the experimental findings with the predic-
of decreasing amplitudes for increasing distances from th&on of the SH model is indeed to investigate whether some
LS’s center. The width of the central peak can be roughlyfundamental features of the observed phenomenon can be
evaluated as the diameter of the first dark ring in each framejescribed in terms of this very general model.
and appears to be practically independentypf Using the Swift-Hohenberg model, it is found analytically
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FIG. 3. Variation in the main frequency of the LS’s tail oscilla-
tions as a function of the system bandwidth. Bath, andq, are
adimensional quantitiesee text for definition

that the LS's tails are described by single spatial scale oscil-
lations, embedded in an exponential envelope that departs
from the lower uniform state.

Though the LS’s tails in our case display some deviations
from the above ideal behavior, the qualitative agreement be-
tween our observations and the results of the general theory
reported in Ref[15] is satisfactory. In particular, it is pos-
sible to identify for each value off, a dominating spatial
scale in the oscillatory tails. To this purpose, we measure the
distance between successive maxima of a single LS and av-
erage this quantity over all observed maxima. This way, we
obtain the dominant spatial frequency of the tail oscillations,
which is then normalized tqg and reported ag,;s in Fig.

3. The error bars correspond to the measured frequency fluc-
tuations from thegy,s, reflecting the fact that the tail oscil-
lations are not rigorously at a single spatial scale. Looking at
Fig. 3, one easily realizes tha{,s practically coincides with

gy, for q,=<3. At higher values ofy, , no variations ing;s as

well as in overall LS’s profile are observed.

The shape of the tails is responsible for the interactions
between localized structures. Namely, while for monotoni-
cally decreasing tails, one would expect only attractive or
repulsive forces between LS's, oscillatory tails induce oscil-
latory signs of the interactions, thus producing both attractive
and repulsive forces, depending on the distance between the
centers of a pair of LS'§15,17. A recent work[11] has
experimentally demonstrated the existence of a discrete set
of LS bound states, occurring in the presence of oscillations
on the LS’s tails. The selection rule for the discrete set of
bound states observed has been there put in relation with the
spacing of their rings originated by diffraction around the
central peak. In the following we show how these bound
states can be in fact tuned by varying the spatial frequency
bandwidth of the interferometer, and we discuss how the
selection of the observed bound states can be put in the very
general framework of a subcritical SH model.

In Fig. 4 we display a set of different bound states ob-
served forq,=3.6. We notice that the states form a set that
can be ordered following a precise rule, given by simply

PHYSICAL REVIEW E 65 066204

counting the number of maxima and minima that occur along  £iG. 4. Snapshots of different bound states observedy,at
the segment connecting the two LS'’s centers. We will call-3.6 |,=500 xW/cn?. All patterns(a)—(e) are obtained by in-

this numbem asbound state ordenumber. Such a feature is ducing a pair of LS's with an increasing initial distance between
encountered for all values af,. At small system band- centers, and letting the system evolve up to the time at which the

widths, however, we observe only the first two or threestationary bound state is realized.
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bound states, instead of the entire set shown in Fig. 4. This is 2 =
probably due to the fact that the binding energy of each state |_d
varies withq,, and in some cases it is not sufficient to keep 154 Atails

the LS pair tightly bound in the presence of unavoidable ]
system inhomogeneities and fluctuations.

A theory for the interaction of LS pairs was given in Ref. La i S A { """" E """
[15] in the context of study on a real Swift-Hohenberg equa- ] {

tion. As already discussed, we expect this model to be 0.5+

closely applicable to our system in the present conditions. : qb
Following that approach, the weak interactions between a 0 : : : :
pair of LS’s with tails decaying with a length and oscillat- 1 2 3 4

ing at a frequency, lead to a time evolution for the distance

R between the LS's centers ruled by FIG. 5. d/ A s VS Oy, (see text for definitions Both quantities

are adimensional. Notice that, for all measurement a constant value

drR 1 d R ofE/Atai,s~l is realized within the experimental errors.
i RgR®€ “TeosrR=F(R,u.v). 2

As a consequence, an infinite number of stable boun(ﬁizt?eﬁriﬁ/r\nymperr'eTgiézsumn% ?:qangti(gggquegltoe
states are possible, corresponding to the solutibrs0, gthA g Is reported v, in Fig. 5. S vald

dF/dR<0 of Eq.(2). In the limit in which the scaleg and ~ ©Of the ratiod/A =1 is observed within the errors, indicat-
v are well separated, the differenB. ;— R, between the ing that the above discussed relation between the oscillations
separation distances of two successive bound states corred the tails of each LS and the selection rule of bound states
sponds approximately to the tail oscillation length® of a  is verified. This marks the fact that tuning of the equilibrium
single LS. We recall that byveak interactionwe mean a distances between LS's in bound states can be quantitatively
regime in which the intensity amplitude of one LS is small in performed in our experiment.
the space region in which the intensity amplitude of the other In conclusion, we have given a quantitative evidence of
is large. In the case of our experimental data, this is true fothe tuning of the LS’s spatial profile in a nonlinear optical
all the bound states observed, with the possible exception dfterferometer, using the system spatial frequency bandwidth
the lowest order one. as a control parameter. We have discussed the role of the
If we assume that Eq2) describes correctly the bound oscillations occurring on each single LS’s tail in determining
state selection rule in our experiment, it immediately followsthe interactions between different LS’s. Finally, we have
that tuning of the equilibrium distances should be possible byerified the agreement between the selection rules for the
varying the scale of the oscillations on the tails of each singldormation of bound states observed in our experiment, and
LS. In order to check this point, we measured the quantitieshose predicted for the same phenomenon by a general model
Apn+1=Rp:1—R,, and then averaged them over the boundfor pattern formation in nonequilibrium systems.
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